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An orthomodular lattice (OML) with a conditional state can be used as a model for
noncompatible events (a quantum system). In this paper we will study some properties
of a conditional state and an s-map which are defined on an OML. We show conditions
when a quantum system has the same properties as the classical probability space.
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1. INTRODUCTION

The idea that quantum probabilities are nothing else than conditional
probabilities was intensively discussed from various points of view, see, e.g.,
(Accardi, 1984; Ballentine, 1986, 2001; Beltrametti and Cassinelli, 1981; Cox,
1961; De Muynck, 2001; Dvurečenskij and Pulmannová, 2000; Gudder, 2001;
Nánásiová, 1987; Pták and Pulmannová, 1991; Varadarajan, 1968). Recently this
approach to quantum probability was generalized in the so called contextual frame-
work (Khrennikov, 1999, 2000, 2001a,b, 2004; Nánásiová, 1987a,b, 1993a,b). In
the latter approach we consider conditioning with respect to various contexts,
complexes of experimental physical conditions and not conditioning of one event
a, with respect to other event b, under the same context (state) as it was done
in investigations on conditional probabilities (compare with Kolmogorov (1993,
1965), Renyi (2006), Cox (1961), or quantum system generalizations (Baltrametti,
2001; Baltrametti and Cassinelli, 1981; Nánásiová, 1987a,b, 1993a)).
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In the present paper we still use the traditional event-conditioning (under
the fixed conditional state). However, we essentially generalize the notion of a
conditional state (here we continue investigations (Nánásiová, 1993b, 1998, 2000,
2006a,b)).

We will study a conditional state on a quantum system using Renyi’s ap-
proach. This approach helps us to define an independence of events in a different
way, than it is done in the classical theory of probability. If an event a is inde-
pendent of an event b, then the event b can be dependent on the event a (problem
of causality) (Nánásiová, 1998, 2006a,b)). We can define an s-map (function for
simultaneous measurements on a quantum system). By using the s-map we can
introduce a joint distribution also for noncompatible observables on a quantum
system. It can be shown that we can define a covariance and a correlation on
L. We show, that also for an un-symmetry s-map on a Boolean algebra (a single
probability space) we get the same situation as in the classical theory of probability.

1.1. A Conditional State on an OML

In this part we introduce the notions as a quantum system (an orthomodular
lattice), a state, a conditional state, and their basic properties.

Definition 1.1. Let L be a nonempty set endowed with a partial ordering ≤.
Let there exist the greatest element 1 and the smallest element 0. We consider
operations supremum (∨), infimum ∧ (the lattice operations ), and an map ⊥ :
L → L defined as follows.

(i) For any {an}n∈A ∈ L, where A ⊂ N is finite,∨
n∈A

an,
∧
n∈A

an ∈ L.

(ii) For any a ∈ L(a⊥)⊥ = a.
(iii) If a ∈ L, then a ∨ a⊥ = 1.
(iv) If a, b ∈ L such that a ≤ b, then b⊥ ≤ a⊥.
(v) If a, b ∈ L such that a ≤ b then b = a ∨ (a⊥ ∧ b) (orthomodular law).

Then (L, 0, 1,∨,∧,⊥) is said to be the orthomodular lattice (briefly OML).
Let L be an OML. Then elements a, b ∈ L will be called:

• orthogonal (a⊥b) iff a ≤ b⊥ ;
• compatible (a ↔ b) iff there exist mutually orthogonal elements a1, b1, c ∈

L such that

a = a1 ∨ c and b = b1 ∨ c.
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If ai ∈ L for any i = 1, 2, . . . , n and b ∈ L is such, that b ↔ ai for all i, then
b ↔ ∨n

i=1 ai and

b ∧
(

n∨
i=1

ai

)
=

n∨
i=1

(ai ∧ b)

(Dvurečenskij and Pulmannová, 2000; Pták and Pulmannová, 1991; Varadarajan,
1968).

Definition 1.2. A map m : L → [0, 1] such that

(i) m(0) = 0 and m(1) = 1.
(ii) If a⊥b then m(a ∨ b) = m(a) + m(b) is called a state on L.

Definition 1.3. Nánásiová (2006a). Let L be an OML. A subset L0 ⊂ L − {0} is
called a conditional system (CS) in L if the following conditions hold:

• If a, b ∈ L0, then a ∨ b ∈ L0.
• If a, b ∈ L0 and a < b, then a⊥ ∧ b ∈ L0.

Let A ⊂ L. Then L0(A) is the smallest CS, that contains the set A.

Definition 1.4. (Nánásiová, 2006a). Let L be an OML and let L0 be a CS in L.
Let f : L × L0 → [0, 1]. If the function f fulfills the following conditions:

(C1) for each a ∈ L0f (., a) is a state on L;
(C2) for each a ∈ L0f (a, a) = 1;
(C3) if {ai}ni=1 ∈ L0 and ai are mutually orthogonal, then for each b ∈ L

f

(
b,

n∨
i=1

ai

) n∑
i=1

f

(
ai,

n∨
i=1

ai

)
f (b, ai);

then it is called a conditional state.

Proposition 1.1. (Nánásiová, 2006a). Let L be an OML. Let {ai}ni=1 ∈ L, n ∈ N

where ai⊥aj for i 
= j . If for any i there exists a state αi , such that αi(a1) = 1,
then there exists a CS such that for any k = (k1, k2, . . . , kn), where ki ∈ [0; 1] for
i ∈ {1, 2, . . . , n} with the property

∑k
i=1 ki = 1, there exists a conditional state

fk : L × L0 → [0; 1],

such that

1. for any i and each d ∈ Lfk(d, ai) = αi(d);
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2. for each ai

fk

(
ai,

n∨
i=1

ai

)
= ki.

Proposition 1.2. (Nánásiová, 2006a) Let L be an OML and f be a conditional
state. Let b ∈ L, a, c ∈ L0 such that f (c, a) = 1. Then b is independent of a with
respect to the state f (., c)(�f (.,c) a) if f (b, c) = f (b, a).

The classical definition of independency of events in a probability space
(�,B,P) is a special case of this definition, because

P (A|B) = P (A|�) and only if P (A ∩ B|�) = P (A|�)P (B|�).

If L0 be CS and f : L × L0 → [0, 1] is a conditional state, then (Nánásiová,
2006a)

(i) Let a⊥, a, c ∈ L0, b ∈ L and f (c, a) = f (c, a⊥) = 1. Then b �f (.,c) a if
and only if b �f (.,c) a⊥.

(ii) Let a, c ∈ L0, b ∈ L and f (c, a) = 1. Then b �f (.,c) a if and only if
b⊥ �f (.,c) a.

(iii) Let a, c, b ∈ L0, b ↔ a and f (c, a) = f (c, b) = 1. Then b �f (.,c) a if
and only if a �f (.,c) b.

2. OBSERVABLES AND AN S-MAP

Let L be an OML. Let us denote L2 = L × L.

Definition 2.1. Nánásiová (2006b). Let L be an OML. The map p : L2 → [0, 1]
will be called an s-map if the following conditions hold:

(s1) p(1, 1) = 1;
(s2) if a⊥b, then p(a, b) = 0;
(s3) if a⊥b, then for any c ∈ L,

p(a ∨ b, c) = p(a, c) + p(b, c)

p(c, a ∨ b) = p(c, a) + p(c, b).

Proposition 2.1. Nánásiová (2006b). Let L be an OML and let there be an s-map
p. Let a, b, c ∈ L, then

1. if a ↔ b, then p(a, b) = p(a ∧ b, a ∧ b) = p(b, a);
2. if a ≤ b, then p(a, b) = p(a, a);
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3. if a ≤ b, then p(a, c) ≤ p(b, c);
4. p(a, b) ≤ p(b, b);
5. if ν(b) = p(b, b), then ν is a state on L.

Proposition 2.2. Nánásiová (2006b). Let L be an OML, let there be an s-map
p. Then there exists a conditional state fp, such that

p(a, b) = fp(a, b)fp(a, 1).

Let L be an OML and let L0 = L − {0}. If f : L × L0 → [0, 1] is a conditional
state, then there exists an s-map pf : L × L → [0, 1].

Indeed in the Nánásiová (2006b) has been shown that if p is a s-map and L0 =
{b ∈ L : p(b, b) 
= 0}, then fp(a, b) = p(a,b)

p(b,b) is a conditional state and conversely
if L0 = L − {0}, then pf (a, b) = f (a, b)f (b, 1) is a s-map.

Proposition 2.3. Nánásiová (2006b). Let L be an OML.

(a) If f is a conditional state, then b �f (.,1) a iff pf (b, a) = pf (a, a)pf (b, b),
where pf is the s-map generated by f .

(b) Let p be an s-map. Then b �fp(.,1) a iff p(b, a) = p(a, a)p(b, b), where
fp is the conditional state generated by the s-map p.

We say that a s-map p is an un-symmetric s-map if there exist a, b ∈ L, such
that p(a, b) 
= p(b, a). If for each a, b ∈ Lp(a, b) = p(b, a) we say that p is a
symmetric s-map.

Proposition 2.4. Let L be an OML and let p be an un-symmetric s-map. Then
there exist two symmetric s-maps q1 and q2 such that for any c ∈ Lqi(c, c) =
ν(c), i = 1, 2.

Proof: Let p be an un-symmetric s-map. If for c, d ∈ Lp(c, d) = p(d, c), then
qi(c, d) = p(c, d), i = 1, 2. From the assumption it follows that there exist a, b ∈
L, such that p(a, b) 
= p(b, a). Let q1(a, b) = q1(b, a) = p(a, b) and q2(a, b) =
q2(b, a) = p(b, a). From it follows, that qi is symmetric, i = 1, 2. As p is the
symmetric s-map for each compatible elements (Proposition 2.1), then qi is also
s-map and qi(c) = ν(c) for c ∈ L and i = 1, 2. �

We say that a conditional state f (., .) is Bayesian if for each a, b ∈
L0f (a, b)f (b, 1) = f (b, a)f (a, 1).

Proposition 2.5. Let L be an OML. Let p be a s-map and let f be a conditional
state.
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(a) The s-map pf is symmetric for each a, b ∈ L0 iff f is the Bayesian condi-
tional state.

(b) The s-map p is symmetric iff fp is the Bayesian conditional state.

Proof: (a) Let f be a Bayesian conditional state and pf (a, b) = f (a, b)f (b, 1).
From it follows, that

pf (a, b) = f (a, b)f (b, 1) = f (a, b)f (a, 1) = pf (b, a).

Conversely, ifpf (a, b) = pf (b, a), then

f (a, b)f (b, 1) = pf (a, b) = pf (b, a) = f (b, a)f (a, 1).

(b) Let p(a, b) = p(b, a) for each a, b ∈ L. Let a, b 
= 0. Then fp(a, b) =
p(a, b)/p(b, b) and fp(b, 1) = p(b, b). From it follows, that

p(b, b)fp(a, b) = fp(b, 1)fp(a, b) = p(a, b)

p(a, a)fp(b, a) = fp(a, 1)fp(b, a) = p(b, a).

Hence p is the symmetric s-map, then

fp(b, 1)fp(a, b) = fp(a, 1)fp(b, a).

The opposite implication we can prove analogically. �

Let B(R) be a σ -algebra of Borel sets. A homomorphism x : B(R) → L is
called an observable on L. If x is an observable, then R(x) := {x(E); E ∈ B(R)} is
called a range of the observable x. It is clear that R(x) is a Boolean algebra [Var].
A spectrum of an observable x is defined by the following way: σ (x) = ∩{E ∈
B(R); x(E) = 1}. If g is a real function, then g ◦ x is such observable on L that:

1. R(g ◦ x) ⊂ R(x);
2. σ (g ◦ x) = {g(t); t ∈ σ (x)};
3. for any E ∈ B(R)

g ◦ x(E) = x({t ∈ σ (x); g(t) ∈ E}).
We say that x and y are compatible (x ↔ y) if there exists a Boolean sub-
algebra B ⊂ L such that R(x) ∪ R(y) ⊂ B. In other words x ↔ y if for any
E,F∈,B(R), x(E) ↔ y(F ).

We call an observable x a finite if σ (x) is a finite set. It means, that σ (x) =
{ti}ni=1, n ∈ N . Let us denote O the set of all finite observables on L.

Definition 2.2. Let L be an OML and p : L × L → [0; 1] be an s-map. Let
x, y ∈ O. Then an map Px,y : B(R) × B(R) → [0, 1], such that

Px,y(E,F ) = p(x(E), y(F )),

is called a joint distribution for the observables x and y for the s-map p.
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If x ∈ O and m is a state on L, then mx(E) = m(x(E)), E ∈ B(R) is a
probability distribution for x and

m(x) =
∑

t∈σ (x)

tm(x(t))

and for any real function g we have

m(g ◦ x) :=
∑

t∈σ (x)

g(t)m(x(t)).

Definition 2.3. Let L be an OML and let p : L × L → [0; 1] be an s-map. Let
x, y,∈ O Then

p(x, y) =
∑

xi∈σ (x)

∑
yj ∈σ (y)

xiyjp(x(xi), y(yj )),

is called the first joint moment for observables x, y.
From the previous definition it follows that

p(x, x) =
∑

xi∈σ (x)

x2
i p(x(xi), x(xi)) =

∑
xi∈σ (x)

x2
i ν(x(xi)) := ν(g ◦ x),

where g(t) = t2.
From analogy with the classical theory of probability we can define notions

for example as covariance (c(., .)), variance (var(.)) and correlation coefficient
(r(., .)) by the following way:

c(x, y) : = p(x, y) − ν(x)ν(y),

var(x) : = c(x, x),

r(x, y) = c(x, x)√
var(x)var(y)

.

In spite of the classical theory of probability in this case c(x, y) is not equal
to c(y, x) in general.

Proposition 2.6. Let L be an OML, let p be an s-map on L and let O be
a set of all finite observables on L. For each x, y ∈ O there exist probabil-
ity spaces (�,Si , Pi)(i = 1, 2) and random variables ξi, ηi(i = 1, 2), which are
Si-measurable such that:

(a) Ei(ξi) = ν(x) and Ei(ηi) = ν(y), i = 1, 2;
(b) c(x, y) = cov(ξ1, η1), c(y, x) = cov(η2, ξ2);
(c) (c(x, y))2 ≤ c(x, x)c(y, y).
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Proof: If x, y ∈ O, then σ (x) = {xi}n1
i=1, σ (y) = {yj }n2

j=1. Let us denote

�1 = {(xi, yj ); i = 1, . . . , n1, j = 1, . . . , n2},
�2 = {(yj , xi); j = 1, . . . , n2, i = 1, . . . , n1},
Sk = 2�k , k = 1, 2.

Then (�k,Sk) is the measurable space. Let us denote

ξ1((xi, yj )) = xi, η1((xi, yj )) = yj ,

ξ2((yj , xi)) = xi, η2((yj , xi)) = yj .

If p is an s-map, then from the properties of p follows, that P1 = px,y is the
probability measure on (�1,S1) and P2 = py,x is the probability measure on the
measurable space (�2,S2).

(a) It is clear, that

P1({ω ∈ �1; ξ1(ω) = xi}) = P1{(xi, yj ); j = 1, . . . , n2}.
From it follows, that

P1({ω ∈ �1; ξ1(ω) = xi}) = P (x(xi), y(σ (y))) = p(x(xi), 1) = ν(x(xi)).

Hence

Pi(ξi = xi) = ν(x(xi))

Pi(ηi = yj ) = ν(y(yj ))

Now, we can see, that

Ei(ξi) =
∑

k

xkPi(ξi = xk) = ν(x).

Similarly we get

Ei(ηi) = ν(y).

(b) From the theory of probability it follows, that

var(ξ1, η1) =
∑

i

∑
j

(xi − ν(x))(yj − ν(y))P1(ξ1 = xi, η1 = yj ))

Let us denote ai = x(xi) and bj = y(yj ). Then

cov(ξ1, η1) =
∑
i,j

(xi − ν(x))(yj − ν(y))p(ai, bj )

and

cov(ξ2, η2) =
∑
i,j

(xi − ν(x))(yj − ν(y))p(bj , ai).
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As ∑
i,j

p(ai, bj ) =
∑
i,j

p(bj , ai) = 1,

∑
1

p(ai, bj ) =
∑

i

p(bj , ai) = ν(bj )

and ∑
i

p(ai, bj ) =
∑

j

p(bj , ai) = ν(ai)

we have∑
i,j

(xi − ν(x))(yj − ν(y))p(bj , ai) = p(x, y) − ν(x)ν(y) = c(x, y).

Similarly

var(ξ2, η2) = p(y, x) − ν(x)ν(y) = c(y, x).

(c) As (cov)(ξk, ηk))2 ≤ cov(ξk, ξk)cov(ηk, ηk) and cov(ξk, ξk) = c(x, x),
cov(ηk, ηk) = c(y, y) we have

(c(x, y))2 ≤ c(x, x)c(y, y),

(c(y, x))2 ≤ c(x, x)c(y, y). �

Proposition 2.7. Let L be an OML and let x, y ∈ O. Then

(i) c(x, y) = p(gx ◦ x, gy ◦ y), where gz is a real function such that gz(t) =
t − ν(z), for z ∈ O;

(ii) r(x, y) ∈ [−1, 1];
(iii) if x ↔ y, then c(x, y) = c(y, x) and r(x, y) = r(y, x).

Proof: Let x, y ∈ O. Then σ (x) = {xi}n1
i=1 and σ (y) = {yj }n2

j=1.
(i) From the definition gx ◦ x, gy ◦ y we have

p(gx ◦ x, gy ◦ y) =
∑

i

∑
j

gx(xi)gy(yj )p(x(xi), y(yj ))

=
∑

i

∑
j

(xi − ν(x))(yj − ν(y))p(x(xi), y(yj ))

=
∑

i

∑
j

xiyjp(x(xi), y(yj ))
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= ν(x)ν(y)
∑

i

∑
j

p(x(xi), y(yj ))

= p(x, y) − ν(x)ν(y) = c(x, y).

(ii) From the previous proposition we know that there exist two probabil-
ity spaces (�,Fk, Pk) and random variables ξk, ηk, k = 1, 2 such that c(x, y) =
cov(ξ1, η1) and c(x, y) = cov(ξ2, η2). Moreover c(x, x) = cov(ξk, ξk) = var(ξk).
Analogically c(y, y) = cov(ηk, ηk) = var(ηk). Then

r(x, y) = c(x, y)√
c(x, x)c(y, y)

= cov(ξ1, η1)√
var(ξ1)var(η1)

= ρ(ξ1, η1) = ρ1

and

r(y, x) = c(y, x)√
c(x, x)c(y, y)

= cov(ξ2, η2)√
var(ξ2)var(η2)

= ρ(ξ2, η2) = ρ2.

because ρk is correlation coefficient on the probability space (�k,Fk, Pk), then
ρk ∈ [−1, 1] for k = 1, 2. From this follows that r(x, y), r(y, x) ∈ [−1, 1]. Also
this fact follows immediately from the Proposition 2.4 (c).

(iii) Let x ↔ y. Then for each xi ∈ σ (x) and each for yj ∈ σ (y) we have

p(x(xi), y(yj )) = p(y(yj ), x(xi))

and so

p(x, y) =
∑

i

∑
j

xiyjp(x(xi), y(yj ))

=
∑

i

∑
j

xiyjp(y(yj ), x(xi))

= p(y, x).

From this follows that

c(x, y) = c(y, x). �

In the previous proof we could see, than an un-symmetry of a covariance is
dependent only on an un-symmetric s-map. Let (�,S, P ) be a classical probability
space and ξ, η be some random variables on it. From the classical theory of
probability we know, that the set of all random variables is a linear space, the
covariance cov(ξ, η) is the inner product and the standard deviation

√
cov(η, η) is

the norm. From it follows that the correlation coefficient

ρ(ξ, η) = cov(ξ, η)√
cov(η, η)cov(ξ, ξ )

= cos(βP ),
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where βP is the angle between the random variables ξ and η in this geometry. For
the example Bell’s inequality is valuated only for an un-symmetric s-map also on
a Hilbert space. Each Hilbert space is an OML. From Proposition 2.5 it follows,
that if fp is Bayesian, then Bell’s inequality is not valuated also for noncompatible
observables.

Example 2.1. Let L = {a, a⊥, b, b⊥, 0, 1}. Let c ∨ d = 1 if c 
= d and c, d ∈
L − {0}. Let c ∧ d = 0 if c 
= d and c, d ∈ L − {1}. Let(d⊥)⊥ = d for d ∈ L

and 1⊥ = 0. It is clear that L is an OML and Bd = {d, d⊥, 0, 1}, d ∈ {a, b} is a
Booelan algebra. Let f (s, t) is defined by the following way:

s/t a a⊥ b b⊥ 1
a 1 0 0.4 0.4 0.4
a⊥ 0 1 0.6 0.6 0.6
b 0.2 11/30 1 0 0.3
b⊥ 0.8 19/30 0 1 0.7

From f this we can compute pf (s, t). Then we get:

s/t a a⊥ b b⊥

a 0.4 0 0.12 0.28
a⊥ 0 0.6 0.18 0.42
b 0.08 0.22 0.3 0
b⊥ 0.32 0.38 0 0.7

We can see that pf (a, b) = pf (a, a)pf (b, b), but pf (b, a) 
= pf (b, b)pf (a, a).
In the following we will write pf = p. Let x, y be observables on L such that
R(x) = {a, a⊥, 0, 1} = Ba , and R(y) = {b, b⊥, 0, 1} = Bb. It is easy to see, that
x is not compatible with y. Let, for example,

x(−1) = a x(1) = a⊥

y(0) = b y(5) = b⊥.

In the following tables we have the joint distributions px,y and py,x .

px,y 0 5
−1 0.12 0.28

1 0.18 0.42

py,x −1 1
0 0.08 0.22
5 0.32 0.38
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Now we can compute the following characteristics:

ν(x) = −1 × 0.4 + 0.2 × 0.6 = 0.2,

ν(y) = 0 × 0.3 + 5 × 0.7 = 3.5,

p(x, y) = −5 × 0.28 + 5 × 0.42 = 0.7,

p(y, x) = −5 × 0.32 + 5 × 0.38 = 0.3,

c(x, y) = p(x, y) − ν(x)ν(y) = 0.7 − 0.2 × 3.5 = 0,

c(y, x) = p(y, x) − ν(x)ν(y) = 0.3 − 0.2 × 3.5 = −0.4,

c(x, x) = 0.96 c(y, y) = 5.25,

r(x, y) = 0 r(y, x) = 0.178.

In the end we can rewrite these results in to “the covariance matrix”:(
c(x, x) c(x, y)

c(y, x) c(y, y)

)
=

(
0.96 0

0.178 5.25

)

We can see that “the covariance matrix” need not be in symmetry. In the classical
theory of probability, where we suppose that all random variables are compatible,
it has to be in symmetry.

Example 2.2. Let L be the same OML as in the Example 2.1. Let p(s, t) is
defined by the following way:

s/t a a⊥ b b⊥

a 0.4 0 0.08 0.38
a⊥ 0 0.6 0.22 0.32
b 0.08 0.22 0.3 0
b⊥ 0.32 0.38 0 0.7

Let x, y be observables on L such that R(x) = {a, a⊥, 0, 1} , and R(y) =
{b, b⊥, 0, 1}. It is easy to see, that x is not compatible with y. Let, for example,

x(−1) = a x(1) = a⊥

y(0) = b y(5) = b⊥ .

In this case px,y = py,x .

px,y 0 5
−1 0.08 0.38

1 0.22 0.32
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Now we get

ν(x) = 0.2, ν(y) = 3.5,

p(x, y) = p(y, x) = −0.3, c(x, y) = c(y, x) = −0.4,

c(x, x) = 0.96, c(y, y) = 5.25,

r(x, y) = r(y, x) = 0.178.

In the end we can write these results to the covariance matrix:(
c(x, x) c(x, y)

c(y, x) c(y, y)

)
=

(
0.96 0.178

0.178 5.25

)

We can see that the covariance matrix is symmetry as in the classical theory of
probability, but x,y are not compatible.

In the end we can say, that we cannot prove that two observables are com-
patible by using statistics, but we can only prove that they are not compatible.
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